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Abstract

Streamflow depends on the soil moisture of a river catchment and can be measured
with relatively high accuracy. The soil moisture in the root zone influences the la-
tent heat flux and hence the quantity and spatial distribution of atmospheric water
vapour and precipitation. As numerical weather forecast and climate models require5

a proper soil moisture initialization for their land surface models, we enhanced an En-
semble Kalman Filter to assimilate streamflow timeseries into the multi-layer land sur-
face model TERRA-ML of the regional weather forecast model COSMO. The impact of
streamflow assimilation was studied by an observing system simulation experiment in
the Enz River catchment (located at the downwind side of the northern Black Forest in10

Germany). The results demonstrate a clear improvement of the soil moisture field in
the catchment. We illustrate the potential of streamflow data assimilation for weather
forecasting and discuss its spatial and temporal requirements for a corresponding, au-
tomated river gauging network.

1 Introduction15

Quantitative precipitation forecasting (QPF) one of the most complex challenges in nu-
merical weather prediction (NWP) (e.g. Rotach et al., 2009; Wulfmeyer et al., 2008).
QPF failures can be due to errors in numerics, limited spatial resolution of the model,
erroneous model physics, incorrect initial conditions, and limited predictability. The
skill of QPF, particularly on the mesoscale, is still strongly limited by uncertainties in20

initial conditions. Particularly, dynamics in complex terrain and the inhomogeneous
distribution of water vapour are considered the most important unknowns in the initial
fields. The water vapour field of the continental lower troposphere and therefore cloud
formation and precipitation is influenced by the interaction of the atmosphere with the
land surface through the energy and water fluxes. Corresponding studies show the25

soil moisture influence on quantity and spatial distribution of precipitation (e.g. Schär
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et al., 1999; Hohenegger et al., 2008; Trier et al., 2004). Particularly, in summer-
time, continental QPF depends on the initialization of root zone soil moisture and other
land surface states (Reichle et al., 2002; Hohenegger et al., 2009). Soil moisture
not only depends on the weather but also on the local land surface characteristics
(soil texture, vegetation, orography). But for this highly heterogeneous quantity only5

scarce representative measurements are available at point locations (e.g. Bárdossy
and Lehmann, 1998; Grayson and Western, 1998). Multiple efforts to apply remote
sensing to regions of scarce or shallow vegetation to obtain the skin layer soil moisture
are currently under way (e.g. Crow and Wood, 2003; Dunne and Entekhabi, 2006; Dr-
usch and Viterbo, 2007; Gao et al., 2007). But these techniques so far do not provide10

data for soil moisture estimates under dense vegetation and within the total soil profile.
Hence the knowledge of the soil moisture distribution is a key issue in NWP.

As the lower boundary of weather forecast and climate models, land surface mod-
els (LSM) calculate the coupled water and energy balance at each grid cell of the
atmospheric model. On these scales (≥1 km2), soil texture, topography and vegeta-15

tion and, therefore, water and energy fluxes, soil moisture, runoff and soil temperature
are highly heterogeneous (e.g. Kabat et al., 1997). This heterogeneity can neither be
measured nor modelled explicitly at acceptable cost. For each grid cell the precipi-
tation is balanced by the sum of evapotranspiration, runoff and soil moisture change.
Evapotranspiration and soil moisture cannot be measured at this scale over the large20

areas an atmospheric model is applied to (e.g. Beven, 2001; Pitman et al., 2004). Also
climate simulations rely on a proper root zone soil moisture initialization (e.g. Conil et
al., 2009; Seneviratne et al., 2006).

Remotely sensed land surface data and air-temperature are currently assimilated
to overcome errors in soil moisture and temperature simulation in NWP models (e.g.25

Hess, 2001; Seuffert et al., 2004; Crow and Wood, 2003; Gao et al., 2007).
Still unresolved problems are the soil moisture analysis in densely vegetated areas

and in the root zone. Recently, various approaches of data assimilation were set up
and analyzed to retrieve the root zone soil moisture at the regional scale in hydrological
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models. They mainly use Kalman Filter techniques and their modifications, which are
outlined in detail e.g. by Evensen (2006). Further, Evensen (2003) gives a detailed de-
scription and literature review of the Ensemble Kalman Filter (EnKF, Evensen, 1994).
Walker et al. (2002) apply a modified Kalman Filter technique with a distributed hydro-
logical model to retrieve the three-dimensional soil moisture from surface soil moisture5

measurements. This is a valuable approach in hydrology but due to the intense com-
putational cost of a distributed hydrological model not a tool currently suitable for NWP.
At the German Weather Service (DWD) Hess (2001) implemented a method based on
the EKF (Extended Kalman Filter) technique into COSMO that adjusts the soil state to
meet the observed atmospheric state. However, in his approach the soil moisture and10

soil temperature do not necessarily reflect the reality, i.e., its usage is not consistent
with the hydrologic interaction of the land surface and lower atmosphere. This is proven
by Drusch and Viterbo (2007), who assimilated screen-level variables in ECMWF’s In-
tegrated Forecast System. It becomes a problem when improving parameterizations
that rely on quantities that changed by data assimilation, e.g. soil moisture and tem-15

perature or atmospheric fields like the water vapour.
Moradkhani et al. (2005) and Dunne and Enthekhabi (2006) e.g. use the Ensemble

Kalman Smoother for root zone soil moisture analysis assimilating L-band radiobright-
ness temperatures in an area of the Southern Great Plains (USA) whose vegetation is
mainly wheat and grasses (Drusch et al., 2001).20

A data source that has only received attention in the past couple of years is stream-
flow from operational river gauging networks. Streamflow is a quantity that can be
measured at relatively high accuracy (about >90%, LfU, 2002). If the runoff is trans-
ported to and within the river network, it can be compared to measured streamflow
at gauging stations. Pauwels and De Lannoy (2006) published the application of a25

retrospective EnKF to assimilate streamflow data for soil moisture retrieval. Their syn-
thetic tests show promising results for a 1000 km2 catchment in Belgium and indicate
improvements especially in case of precipitation underestimation. They apply it to the
high resolution hydrological model TOPLATS. Komma et al. (2008) successfully ap-
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plied the EnKF for soil moisture update in real time flood forecasting in a 622 km2

catchment in Austria. However, they use a simple soil moisture model which is not
complex enough as land surface model for atmospheric models. Clark et al. (2008)
demonstrate that the standard implementation of EnKF is inappropriate and show the
improved performance when streamflow is transformed into log space before applying5

EnKF with the distributed hydrological model TopNet. This is due to the large ranges
in streamflow between peak flow and low flow, which can be 2 orders of magnitude or
more. Streamflow analyses also allow for an evaluation of the model performance (e.g.
Lohmann et al., 2004; Warrach-Sagi et al., 2008). In this study, we go a step further
and study the potential of streamflow data assimilation for soil moisture analysis in a10

catchment, namely for initialisation of numerical weather prediction and climate mod-
els. We followed the most recent development in EnKF and applied it to the streamflow
data assimilation for soil moisture initialization in a land surface model of the numerical
weather predication model COSMO.

In southern Germany a network of automated river and precipitation gauges has15

been installed in the past couple of years by the federal services for flood monitoring.
The federal state Baden-Württemberg has implemented a flood forecast centre, which
is able to provide half- hourly updates of streamflow measurements at approximately
140 gauges at the rivers Rhein, Neckar, Donau, Main and their main contributeries.
Similar warning systems are available in the federal state Bayern and Rheinland-Pfalz.20

Such automated networks provide a valuable source for operational streamflow data
assimilation.

The square root algorithm for the EnKF (Evensen, 2004) is set up to assimilate
streamflow data in TERRA-ML to analyse the soil water content of the soil profile down
to 2.43 m soil depth simulated by TERRA-ML. By mean of an observing system simula-25

tion experiment (OSSE) in the Enz River catchment (Germany) we studied the potential
of streamflow data assimilation and its spatial and temporal requirements for an auto-
mated river gauging network. The Enz catchment is on the downwind side of the Black
Forest, i.e. QPF by the weather forecast model is often underestimating, making it a
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valuable test bed for streamflow data assimilation (Pauwels and De Lannoy, 2006).
The study is carried out exemplarily with the land surface model TERRA-ML coupled
to a river routing model (Warrach-Sagi et al., 2008). The multi-layer soil and vegetation
model TERRA-ML serves as the lower boundary of the operational non-hydrostatic
mesoscale weather forecast model COSMO (Doms et al., 2005). (COSMO is the5

acronym for the Consortium for Small-scale Modelling (http://www.cosmo-model.org/.)
However, the data assimilation system can be set up for any land surface model that
includes a river routing model to simulate streamflow.

2 Description of TERRA-ML and the river routing scheme

This study applies the stand alone version of TERRA-ML in the framework set up by10

Ament and Simmer (2006). The model configuration and parameters of TERRA-ML
are taken from the German Weather Service’s COSMO. In the framework, TERRA-ML
is set up as if it is called by the COSMO, with the exception that the meteorology is read
from a file instead of forecasted at the time step by the COSMO. This framework has
the advantage that it allows the simulation of a gridded area (e.g. watershed) per time15

step mimicking a simulation with a weather forecast model. An important modification
of TERRA-ML in this study is the parameterization of the hydraulic conductivity and
diffusivity following Campbell (1974) instead of Rijtema (1969) due to the results of
Graßelt et al. (2008) and Warrach-Sagi et al. (2008).

TERRA-ML and the river routing model are set up as described in detail by Warrach-20

Sagi et al. (2008), therefore here only a summary is given. In COSMO the model
TERRA-ML has got 6 hydrological layers (layer depths from the surface: 0.01 m,
0.03 m, 0.09 m, 0.27 m, 0.81 m, 2.43 m) and 8 thermal layers (layer depths from the
surface: 0.01 m, 0.03 m, 0.09 m, 0.27 m, 0.81 m, 2.43 m, 7.29 m, 21.87 m). The lower
boundary condition is given by free drainage at 2.43 m depth and a constant climato-25

logical temperature below 7.29 m depth.
For model simulations, watersheds are divided into grid cells as in atmospheric mod-
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els. For each grid cell the one-dimensional vertical land surface model TERRA-ML is
applied. The locally generated runoff of the LSM needs to be transported into and
along the river system to compare it to streamflow measurements at gauging stations
and to calculate the streamflow at various locations of the river. Based on the routing
scheme described in detail by Lohmann et al. (1996), Lohmann et al. (2004) present5

a lumped optimized linear routing model, which Warrach-Sagi et al. (2008) coupled to
TERRA-ML. The routing scheme describes the time runoff takes to reach the outlet of
a grid cell and the water transport in the river network. It is assumed that water flows
uni-directionally from grid cell to grid cell with eight possible directions through each
side and corner of the grid cell.10

3 The streamflow data assimilation system

The Ensemble Kalman Filter (EnKF) has been reviewed by many authors recently (e.g.
Evensen, 2003, 2006; Pauwels and DeLannoy, 2006; Clark et al., 2008) and therefore
here only a short description of its implementation for the streamflow data assimilation
is given.15

Both, model results and observation, deviate from the true state. The goal of data
assimilation is to find the best estimate of the state (e.g. soil moisture) from model
simulations and measurements (e.g. streamflow). One method is to estimate the mean
state and the “maximum likelihood” including its covariance as uncertainty measure as
it is provided e.g. by the EnKF.20

Various algorithms solve the EnKF equations (see e.g. Evensen, 2006). For
this study we chose the square root algorithm for EnKF (http://enkf.nersc.no) from
Evensen (2004) due to the following aspects: it is stable, needs relatively little com-
puting time, requires relatively little memory and it is straight-forward to implement.
The following base line equations describe the EnKF as it is implemented:25

xb
e,n = M(xa

e,n−1) (1)

557

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/2/551/2009/gmdd-2-551-2009-print.pdf
http://www.geosci-model-dev-discuss.net/2/551/2009/gmdd-2-551-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://enkf.nersc.no


GMDD
2, 551–579, 2009

Streamflow data
assimilation for soil
moisture analysis

K. Warrach-Sagi and
V. Wulfmeyer

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Be,n = (xb
e,n − xb

e,n) × (xb
e,n − xb

e,n)T (2)

Ke,n = (xb − xb) × (H(xb) − H(xb))T (3)

×(Re,n + (H(xb) − H(xb)) × (H(xb) − H(xb))T )−1

Ae,n = (xa
e,n − xa

e,n) × (xa
e,n − xa

e,n)T = (I − Ke,nH) Be,n (4)

xa
e,n = xb

e,n + Ke,n(ye,n − H(xb
e,n)) (5)5

Bold letters represent matrices, x and y are the vectors for the model state and ob-
servation. b is the background (i.e. initial state), a is the analysis, e is the ensemble
member, n is the time step, T is the transpose and K is the Kalman gain matrix. A, B
and R are error covariance matrices of the analysis, background and observation, I is
the identity matrix, H is the observation operator (in this case the river routing model),10

which transforms the variable from model space to observation space, H is the tan-
gent linear observation operator matrix of H and M is the model operator (in this case
TERRA-ML).

Depending on the location within the catchment the water needs more or less time
to travel as streamflow through the river network. Water far away from the gauge ar-15

rives later than the runoff from grid cells close by. The travel time depends on the river
itself and the form and orography of the catchment. This means that the streamflow
measured at a gauge depends on the soil moisture distribution in the catchment for a
time window from time t=0 to t=m∗dt. m is the time step, dt is the time interval of one
time step. This period of streamflow data needs to be assimilated. By this the EnKF20

becomes a “retrospective” EnKF, whose concept is described by Pauwels and DeLan-
noy (2006). The time window depends on the catchment and is determined prior to the
streamflow data assimilation. Then streamflow time series are assimilated depending
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on the catchments’ time window to obtain the soil moisture (see e.g. Sect. 4.2). Follow-
ing Clark et al. (2008), the streamflow is transformed into log space before computing
the error covariances since they demonstrated that this improves the filter performance.

4 The Observing System Experiment (OSSE)

4.1 Study area: the Enz5

The Black Forest is a mountain range that reaches from 47.5◦ S to 49◦ N at a width
of approximately 50 km in Baden-Württemberg (Germany). Reaching from North to
South, the Black Forest modifies significantly most frontal systems arriving from the
Atlantic. In spite of its relatively low height (largest mountain Feldberg 1493 m a.s.l.),
orographic lifting of unstable and moist air masses in this region results in the largest10

amount of precipitation in Germany except the northern front range of the Alps. In
summer, the Black Forest is characterized by strong convection, thunderstorms, and
the development of extreme precipitation events. The eastern Black Forest hosts about
half of the contributories of the Neckar, a major contributory of the Rhine. The western
Black Forest drains directly to the Rhine. Most rivers in Baden-Württemberg contain15

automated gauging stations from the flood forecast center and streamflow data are
available every 30 min.

The 260 km2 Enz catchment upstream of Pforzheim (upstream of the Nagold conflu-
ence) is on the downwind side of the Black Forest, i.e. precipitation is often underesti-
mated by weather forecast models. Therefore the Enz catchment (Fig. 1) was chosen20

for the streamflow data assimilation study. No water reservoirs interrupt the river sys-
tem. Elevation of the catchment ranges between 350 and 930 m above sea level. The
catchment is characterized by forested (mixed deciduous and evergreen coniferous
trees) upland areas and agriculturally used lowlands. Sandy and loamy soils domi-
nate the upper Enz area (Fig. 2). Between 1997 and 2002 annual precipitation in the25

catchment ranged from 1088 to 1451 mm.
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4.2 Set-up of the OSSE

Warrach-Sagi et al. (2008) applied the coupled TERRA-ML-routing model to the Enz
catchment upstream of Pforzheim and compared it to simulations of the flood forecast
centre Baden-Württemberg and to observations. They showed that the model results
and observations agree reasonably well. However, as is always the case, model results5

and observations both include errors and both differ from the true state. To assess the
potential and requirements for streamflow data assimilation, an OSSE is set up. The
results of the TERRA-ML-routing model for 1997 in the Enz river catchment (Warrach-
Sagi et al., 2008) are assumed to be the “true” state, named “CONTROL” hereafter.
The data assimilation experiment starts on the 5 May 1997 with an ensemble of initial10

soil moisture fields in the catchment and an ensemble of streamflow at various loca-
tions in the river network. The CONTROL streamflow serves as “observation” which is
assimilated for the soil moisture analysis. The analysis is then compared to the “true”
state, i.e. the CONTROL soil moisture.

A flow duration check is carried out to obtain the assimilation time window for the15

whole basin at Pforzheim (upstream of Nagold confluence) and the sub basins Große
Enz (90 km2), Kleine Enz (71 km2), Eyach (43 km2) and upstream of Höfen (222 km2),
downstream of the confluence of the Eyach into the Enz (Fig. 1). For the flow duration
check at the initial time step 0.002 kg/m2 runoff are assumed for each grid cell. No more
runoff is assumed afterwards. The routing model calculates the streamflow for each20

catchment (Fig. 3). Depending on the size and structure of the catchment, the time
window until all water has left the catchment varies between 25 and 62 h. Experiments
showed that in most cases an assimilation window of 90% of the time window lead to
the best results in soil moisture distribution and catchments’ mean soil moisture. This
is due to the fact that towards the end of the time window too long streamflow time25

series are assimilated into the grid cells close to the observation location. This will be
discussed in Sect. 4.4 in more detail.
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4.3 Ensemble preparation

For the OSSE a period is chosen, which does not include extreme events (such as
flooding or drought or strong precipitation). A period in spring was chosen, when not
only soil texture but also vegetation and weather control the soil moisture. Furthermore,
in spring and summer soil moisture impacts the development of convection in the atmo-5

sphere. This study starts on the 5 May 1997 (day 125). The initial soil moisture of the
CONTROL simulation is perturbed applying the 2-D-pseudorandom sampling method
and algorithm (http://enkf.nersc.no) of Evensen (2004) to obtain 100 ensemble mem-
bers of initial soil moisture fields, which include no step-functions within the 2-D-area.
(See Evensen (2004) for more details on this approach.) The soil moisture of each grid10

cell is chosen to vary between +10% and −40% of the CONTROL soil moisture. This
is to account for the typical underestimation of precipitation in NWP simulations in this
area and to account for the fact, that the precipitation might have been simulated in the
wrong location within the catchment. The 2-D-pseudorandom fields vary between up
to d=±1 and examples are shown for 2 ensemble members in Fig. 4. According to the15

random number of each grid cell (i , j, k) of each ensemble member e, the soil moisture
η in the grid cell is perturbed to

ηi ,j,k,e = ηi ,j,k,c ∗ d ∗ 0.1 ∀ d > 0, (6)

ηi ,j,k,e = ηi ,j,k,c ∗ d ∗ 0.4 ∀ d ≤ 0, (7)

i , j and k are the indices of the grid cell in eastward, northward and downward direc-20

tion, c is the control state. Like in nature, soil moisture in the ensemble for each grid
cell is always limited between saturation and air dryness point.

The CONTROL streamflow is perturbed by adding Gaussian noise. The
1-D-pseudorandom sampling method and algorithm (http://enkf.nersc.no) of
Evensen (2004) to obtain 100 ensemble members is applied and streamflow25

perturbed by up to ±15%, assuming that the error might be occasionally larger than
the <10% assumed by LfU (2002).
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4.4 Soil moisture analysis

TERRA-ML’s soil column is 2.43 m deep (see Sect. 2). The soil water content (SWC)
of each grid cell depends on its soil depth and its soil moisture η

SWCi ,j = ρw ×
l∑

k=1

(ηi ,j,k × (z(k) − z(k − 1))), (8)

with the density of water ρw , z(k) is the depth of the lower boundary of soil layer k, l is5

the lowest soil layer. Streamflow data is assumed to be available at an half hourly time
step like the observations made by the automated gauges in Baden-Württemberg.

Figure 5 shows the ensemble spread of the catchments’ mean SWC at the initial time
t=0 for the background and the analysis for the catchment upstream of Pforzheim as-
similating streamflow data from Pforzheim. The analysis ensemble has a lower spread10

and is closer to the CONTROL SWC. The ensemble mean SWC at t=0 is 525 kg/m2

for the background, 544 kg/m2 for the analysis and 557 kg/m2 for the CONTROL. Fig-
ure 6 shows the spatial distribution of the SWC at time t=0. Note that single cells show
larger SWC mainly due to different soil texture (peat and loam, see Fig. 2). While the
ensemble mean of the background SWC is everywhere 5–6% lower than the CON-15

TROL SWC, the ensemble mean analysis SWC shows an improvement (Fig. 7). The
analysis differs in more than half of the catchment by ±4% from the CONTROL SWC.
Only in a few upstream grid cells it is worse (8%) than the background SWC. In about
1/3 of the catchment the analysis only differs ±2% from the CONTROL.

The promising results from the 260 km2 catchment led to a study about the potential20

impact of a denser network of gauges for the soil moisture analysis. Gauges were
assumed to be at the outlet of the Große Enz (90 km2), the outlet of the Kleine Enz
(71 km2) and the outlet of the Eyach (43 km2). Little impact was reached for the Eyach,
but for all other catchments the SWC was improved. Figures 8, 9 and 10 show the
results for the Große Enz catchment. Here the impact of the streamflow data assimi-25

lation is much more pronounced as can be seen from Figs. 8 and 10. The ensemble
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mean SWC at t=0 is 535 kg/m2 for the background, 571 kg/m2 for the analysis and
568 kg/m2 for the CONTROL. Figures 9 and 10 show that only close to the outlet the
analysis leads to worse SWCs than the background. Figure 11 shows the impact of as-
similating streamflow from the CONTROL model simulation from the Große Enz outlet,
Kleine Enz outlet and Eyach with a 0.5 hourly time step. Most areas show a positive or5

neutral impact of the data assimilation.
All in all the simulations show a gradient in the impact of the data assimilation. Close

to the gauge location of the assimilated streamflow and at the furthest upstream grid
cells the data assimilation shows worse results than in the middle areas. This is due to
flow duration in the river network and the assimilation window. The grid cells close to10

the gauge would need shorter assimilation windows. However, the OSSE shows that
the streamflow data assimilation has the potential to improve the soil moisture through-
out the catchment and that a more dense gauging network would help to improve this
even further.

5 Conclusions15

Numerical weather forecasting and climate modeling require an accurate soil moisture
initialization for their land surface models. So far the areal distribution of root zone
soil moisture cannot be measured. Streamflow depends on the soil moisture of a river
catchment and is measured at gauging stations of the rivers at relatively high accuracy.

A retrospective EnKF was set up to assimilate streamflow into the multi-layer land20

surface model TERRA-ML of the regional weather forecast model COSMO. An OSSE
was performed in the Enz River catchment located at the downwind side of the north-
ern Black Forest (Germany). The results confirm the potential of streamflow data
assimilation for improving soil moisture analyses. Further, we discussed the spa-
tial and temporal requirements for an automated river gauging network. Half-hourly25

streamflow data is available from the automated gauges of the flood forecast centre of
Baden-Württemberg (Germany) for approximately 140 gauges. Half-hourly resolution
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of streamflow data is sufficient for its assimilation for soil moisture analysis. In the upper
Enz an automated gauge is operational at Höfen. The OSSE shows that streamflow
from this location can already improve SWC in the Enz catchment upstream of Höfen,
but that a denser network would improve the SWC even more. Namely at the out-
lets of smaller sub-catchments, like the Große Enz this would be valuable, since the5

sub-catchments show a differently structured river network (Fig. 1) and flow duration
(Fig. 3). Since the necessary assimilation window depends on the catchment size
(e.g. 48 h for Pforzheim and 21 h for the Kleine Enz), a denser gauging network would
shorten the assimilation time making it even more valuable for initialisation in numerical
weather forecast models.10

All in all the retrospective EnKF is a powerful method to assimilate streamflow data
into a land surface model for root zone soil moisture analysis. The implementation of
the square root algorithm for EnKF from Evensen (2004) is straight-forward and can be
used with any land surface model if a river routing model is attached.
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fach 21 07 52, 100 pp., 2002.

Lohmann, D., Nolte-Holube, R., and Raschke, E.: A large-scale horizontal routing model to be
coupled to land surface parameterization schemes, Tellus, 48A, 708–721, 1996.25

Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., Cos-
grove, B. A., Scheffield, J., Duan, Q., Luo, L., Higgins, W., Pinker, R. T., and Tarpley,
J. D.: Streamflow and water balance intercomparisons of four land-surface models in the
North American Land Data Assimilation System project, J. Geophys. Res., 109, D07S91,
doi:10.1029/2003JD003517, 2004.30

Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.: Uncertainty assessment of hy-
drologic model states and parameters: Sequential data assimilation using the particle filter,
Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604, 2005.

566

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/2/551/2009/gmdd-2-551-2009-print.pdf
http://www.geosci-model-dev-discuss.net/2/551/2009/gmdd-2-551-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
2, 551–579, 2009

Streamflow data
assimilation for soil
moisture analysis

K. Warrach-Sagi and
V. Wulfmeyer

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Pauwels, V. R. N. and DeLannoy, G. J. M.: Improvement of modeled soil wetness conditions
and turbulent fluxes through the assimilation of observed discharge, J. Hydrometeorol., 7,
458–477, 2006.

Pitman, A. J., Dolman, A. J., Kuijit, B., Valentini, R., and Baldocchi, D.: The Climate near the
ground, in: Vegetation, Water, Humans and the Climate: A new perspective on an interactive5

system, edited by: Kabat, P., Claussen, M., Dirmeyer, P. A., Gashk, J. H. C., Bravo de
Guenni, L., Meybeck, M., Pielke, R. A., Vorosmarty, C. J., Hutjes, R. W. A., and Lutkemaier,
S., The IGBP Series, Springer, 9–19, 2004.

Reichle, R. H., Mc Laughlin, D. B., and Entekhabi, D.: Hydrologic data assimilation with the
Ensemble Kalman filter, Mon. Weather Rev., 130, 103–114, 2002.10

Rijtema, P. E.: Soil moisture forecasting. Technical Report Nota 513, Instituut voor Cultuurtech-
niek en Waterhuishouding, Wageningen, 1969.

Rotach, M. W., Arpagaus, M., Dorninger, M., Hegg, C., Frick, J., Montani, A., Ranzi, R., Bouttier,
F., Buzzi, A., Frustaci, G., Mylne, K., Richard, E., Rossa, A., Schär, C., Staudinger, M.,
Volkert, H., Wulfmeyer, V., Bauer, H.-S., Ament, F., Denhard, M., Fundel, F., Germann, U.,15

and Stoll, M.: MAP D-PHASE: Real-time Demonstration of Weather Forecast Quality in the
Alpine Region, B. Am. Meteorol. Soc., submitted, 2009.
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Figure 1  Fig. 1. The orography (based on the 90 m-orographic data from the SRTM) and the river net-
work for the Enz catchment upstream of Pforzheim on the rotated spherical coordinate system
of the COSMO on a grid resolution of 0.01◦ (approx. 1 km).
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Figure 2 

Fig. 2. Soil texture based on 1:200 000 soil map (BÜK 200) of the LGRB (Landesamt für
Geologie, Rohstoffe und Bergbau) (Warrach-Sagi et al., 2008). In TERRA-ML the saturated soil
moisture is 0.364 m/m for sand, 0.445 m/m for sandy loam, 0.463 m/m for loam and 0.863 m/m
for peat.
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Figure 3 

 

 

Fig. 3. For the flow duration check at the initial time step 0.002 kg/m2 runoff are assumed for
each grid cell in the Enz catchment. No more runoff is assumed afterwards. The river routing
model calculates the streamflow for each sub-catchment.
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Fig. 4. The initial soil moisture of the CONTROL simulation is perturbed applying the 2-D-
pseudorandom sampling method and algorithm (http://enkf.nersc.no) of Evensen (2004) to ob-
tain 100 ensemble members of initial soil moisture fields. The 2-D-pseudorandom fields vary
between up to d=±1 and examples are shown for 2 ensemble members.
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Figure 5 

Fig. 5. TERRA-ML’s soil column is 2.43 m deep. The soil water content (SWC) of each grid
cell depends on its soil depth and its soil moisture (Eq. 7). Distribution of initial mean SWC
(t=0) in the Enz catchment upstream of Pforzheim (260 km2) between the ensemble members.
CONTROL mean SWC is 557 kg/m2.
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Figure 6 

Fig. 6. TERRA-ML’s soil column is 2.43 m deep. The soil water content (SWC) of each grid
cell depends on its soil depth and its soil moisture (Eq. 7). The SWC of the is displayed for
the initial time t=0 (5 May 1997) for the background, CONTROL and analysis assimilating
streamflow from the CONTROL model simulation from Pforzheim from t=0 to t=48 h with a 0.5
hourly timestep.
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Figure 7 

 

 

 

 

 

 

 

Fig. 7. The difference in soil water content (SWC) of each grid cell relative to the CONTROL
SWC of each grid cell for the initial time t=0 (5 May 1997) for the background and analysis as-
similating streamflow from the CONTROL model simulation from Pforzheim from t=0 to t=48 h
with a 0.5 hourly timestep.
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Figure 8 

Fig. 8. TERRA-ML’s soil column is 2.43 m deep. The soil water content (SWC) of each grid cell
depends on its soil depth and its soil moisture (Eq. 7). Distribution of initial mean SWC (t=0) in
the Große Enz catchment (90 km2) between the ensemble members. CONTROL mean SWC
is 568 kg/m2.
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Figure 9 

 

Fig. 9. As Fig. 6, but assimilating streamflow from the CONTROL model simulation from the
Große Enz outlet from t=0 to t=30 h with a 0.5 hourly timestep. Note that the scaling is different
from Fig. 6.
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Figure 10 

Fig. 10. The difference in soil water content (SWC) of each grid cell relative to the CONTROL
SWC of each grid cell for the initial time t=0 (5 May 1997) for the background and analysis
assimilating streamflow from the CONTROL model simulation from Große Enz outlet from t=0
to t=30 h with a 0.5 hourly timestep.
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Figure 11 

Fig. 11. The difference in soil water content (SWC) of each grid cell relative to the CONTROL
SWC of each grid cell for the initial time t=0 (5 May 1997) for the background and analysis as-
similating streamflow from the CONTROL model simulation from the Große Enz outlet, Kleine
Enz outlet and Eyach outlet with a 0.5 hourly timestep.
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